
of anti-PirB.1. As we have reported previously (8),
NgR−/− CGN neurite outgrowth is inhibited by
AP-Nogo66 or myelin to the same extent as that
in WT neurons (50% and 49%) (Fig. 3). Anti-
PirB.1 antibody treatment of NgR+/− neurons
partially reversed inhibition by either AP-Nogo66
or myelin, as discussed above with WT neurons.
Anti-PirB.1 treatment of NgR−/− neurons resulted
in a similar partial disinhibition on AP-Nogo66
but did not provide any further rescue, suggesting
that NgR is not involved in AP-Nogo66 inhibi-
tion. In contrast, anti-PirB.1 treatment of NgR−/−

neurons restored neurite outgrowth on myelin to
nearly control levels. Thus, it appears that PirB,
but not NgR, is required for substrate inhibition
by AP-Nogo66 in CGNs, but only accounts for it
partly. In contrast, PirB and NgR both contribute
to the substrate inhibition imparted by myelin.

Because NgR is required for growth-cone
collapse in response to various myelin inhibitors
(6, 7), it is possible that PirB is also involved in this
more acute response. For this experiment, we used
sensory neurons from the DRG of 3-week-old
mice, confirmed to express PirB (fig. S3). Similar
to what has been shown by others (6, 7), we found
that growth cones in this culture system have a
high baseline level of collapse (~30%), which
is further increased (to ~75%) by incubation with
AP-Nogo66 or myelin (Fig. 4). As reported pre-
viously (6, 7), this collapse was largely abolished
in NgR−/− neurons. In addition, blocking PirB
function with anti-PirB.1 was also sufficient to
reverse growth-cone collapse by these inhibitors.

Together, these results support a previously
unknown role for PirB as a necessary receptor
for neurite inhibition by myelin extracts and,
more specifically, by the myelin-associated inhib-
itors Nogo66, MAG, and OMgp. PirB appears to
be a more substantial mediator of substrate in-
hibition than NgR, as removal of PirB function
alone (either genetically or with antibodies) par-
tially disinhibits growth on both myelin extracts
and inhibitors, whereas genetic removal of NgR
alone does not disinhibit on any of these sub-
strates. However, NgR appears to play an adjunct
role in mediating inhibition by myelin extracts
(but not Nogo66), because genetic removal of
NgR can augment the disinhibition caused by anti-
PirB antibodies on myelin (but not on Nogo66).
Other co-receptors or modulators may also con-
tribute in parallel, such as p75, TROY, LINGO,
and gangliosides (17, 18). Conversely, other PirB
ligands, including major histocompatibility com-
plex class I proteins, may contribute to the inhi-
bitory action of myelin (13, 19, 20). Our finding
of collaboration between PirB and NgR may help
to explain the surprising lack of enhanced CST
regeneration after dorsal spinal cord hemisection
in NgR knockout mice (6, 8), despite the reported
regeneration or sprouting seen in rodents infused
with the NgR ectodomain (21). Thus, it might be
necessary to remove both PirB and NgR to
achieve extensive regeneration in vivo. In addition,
because on Nogo66 substrate the genetic removal
of NgR does not further augment the partial dis-

inhibitory effect of PirB removal, it is likely that
there are additional binding receptors for Nogo66.

Although PirB appears to be a more impor-
tant receptor for substrate inhibition than NgR,
inactivation of either PirB or NgR alone is suf-
ficient to block the acute growth-cone collapse
caused by the addition of myelin inhibitors. This
observation suggests that collapse is a more de-
manding process, requiring both PirB and NgR
activities, acting either in parallel or together. In
this context, it is of interest that PirB and NgR
receptors have recently been shown to play sim-
ilar roles in limiting plasticity of synaptic connec-
tions in the visual cortex. In mice lacking either
receptor, eye closure during a critical develop-
mental period results in excessive strengthening
of connections via the open eye (13, 22). The
mechanisms responsible for the effect of both
receptors in mediating growth-cone collapse could
also underlie the commonality of their role in
ocular dominance plasticity.

The mechanism by which PirB signals to in-
hibit axon growth in response to myelin inhib-
itors is not clear. However, PirB has been shown
to antagonize the function of integrin receptors (23)
and to recruit both src homology 2–containing
protein tyrosine phosphatase (SHP)–1 and SHP-2
phosphatases (13, 24); either or both of these
events could attenuate normal neurite outgrowth.
In humans, one or more members of the LILRB
gene family might also play a role in regeneration.
The blockade of PirB/LILRB activity, either with
antibodies or by other means, provides an im-
portant target for therapeutic interventions to
stimulate axonal regeneration.
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“Who” Is Saying “What”? Brain-Based
Decoding of Human Voice and Speech
Elia Formisano,* Federico De Martino, Milene Bonte, Rainer Goebel
Can we decipher speech content (“what” is being said) and speaker identity (“who” is saying it)
from observations of brain activity of a listener? Here, we combine functional magnetic resonance
imaging with a data-mining algorithm and retrieve what and whom a person is listening to from
the neural fingerprints that speech and voice signals elicit in the listener’s auditory cortex. These
cortical fingerprints are spatially distributed and insensitive to acoustic variations of the input so as
to permit the brain-based recognition of learned speech from unknown speakers and of learned
voices from previously unheard utterances. Our findings unravel the detailed cortical layout and
computational properties of the neural populations at the basis of human speech recognition and
speaker identification.

In everyday life, we automatically and effort-
lessly decode speech into language indepen-
dently of who speaks. Similarly, we recognize

a speaker’s voice independently of what she or

he says. Cognitive and connectionist models pos-
tulate that this efficiency depends on the ability of
our speech perception and speaker identification
systems to extract relevant features from the sen-
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sory input and to form efficient abstract represen-
tations (1–3). These representations are invariant
to changes of the acoustic input, which ensures
efficient processing and confers a high robust-
ness to noise or to signal distortion. Relevant
psycholinguist models consider abstract entities
such as phonemes as the building blocks of the
computational chain that transforms an acoustic
waveform into a meaningful concept (2, 3). There
is also psychoacoustic evidence that the identifi-
cation of a speaker relies on the extraction of in-
variant paralinguistic features of his/her voice,
such as fundamental frequency (1).

Numerous functional neuroimaging studies
have provided important insights on the cortical
organization of speech (4–11) and voice (12, 13)
processing. However, the subtraction-based ex-
perimental logic and the limited neuroanatomical
detail only allow for partial and indirect infer-
ences on what distinguishes the auditory cortical
representations of two natural speech or vocal
sounds. Furthermore, it remains unclear how a
speech sound is transformed into the more ab-
stract entity of “phoneme” or “speaker” identity.
Beyond subtraction, results from functional mag-
netic resonance adaptation suggest the involve-
ment in voice identification of a specialized
region in the right anterior superior temporal sul-
cus (STS) (14). For speech processing, a hi-
erarchical fractioning of cortical regions for
sound-based and a more abstract higher-level
processing has been suggested [(15) and sup-
porting online text].

In the present study, we investigate speech and
voice recognition and abstraction at the level of
representation and processing of individual sounds.
By combining multivariate statistical pattern recog-
nition with single-trial functional magnetic reso-
nance imaging (fMRI) (16–20), we estimate and
decode the distinct activation patterns elicited by
different speech sounds and directly assess the
invariance of the estimated neural representa-
tions to acoustic variations of the sensory input.

High spatial resolution (1.5 mm × 1.5 mm ×
2 mm) functional images of the auditory cortex
were collected while participants (n = 7) listened
to speech sounds consisting of three Dutch
vowels (/a/, /i/, /u/) recorded from three native
Dutch speakers (Fig. 1) (21). Consistent with
previous studies (4–6, 8, 10, 12, 14, 15, 22), all
sounds evoked significant fMRI responses in a
wide expanse of the superior temporal cortex,
including early auditory areas (Heschl’s gyrus)
and multiple regions in the planum temporale
(PT), along the superior temporal gyrus, the
STS, and the middle temporal gyrus. Univariate
statistical contrasts, however, yielded only weak
response differences (below significance) or no
differences between conditions (fig. S2)

After this initial analysis, we asked whether
the estimation of a multivoxel activation finger-
print of a sound would allow deciphering its con-
tent and the identity of the speaker. With a method
based on a machine learning classification algo-
rithm (support vectormachine) and recursive feature
elimination (23, 24), we performed two comple-
mentary analyses. We labeled the stimuli and cor-
responding response patterns either according to the
vowel dimension irrespective of the speaker dimen-
sion (“vowel learning”) or according to the speaker
dimension irrespective of the vowel dimension
(“speaker learning”). This led to the grouping of
stimuli and responses in the three conditions: /a/,
/i/, and /u/ and sp1, sp2, and sp3, respectively. We
then examinedwhether our algorithm, after being
trained with a subset of labeled responses (50
trials), would correctly classify the remaining
unlabeled responses (10 trials). In all subjects
and in all possible pairwise comparisons, the al-

gorithm successfully learned the functional rela-
tion between sounds and corresponding spatial
patterns and classified correctly the unlabeled
sound-evoked patterns, both in the case of vowel
learning [/a/ versus /i/ = 0.65 (mean correct-
ness), P= 6 × 10−5; /a/ versus /u/ = 0.69, P= 2 ×
10−5; /i/ versus /u/ = 0.63, P = 4 × 10−4 (Fig.
2A)]; and speaker learning, [sp1 versus sp2 =
0.70, P= 3 × 10−5; sp1 versus sp3 = 0.67, P= 8 ×
10−5; sp2 versus sp3 = 0.62,P= 2 × 10−5 (Fig. 2B)].

To investigate layout and consistency across
subjects of the spatial patterns that make this de-
coding possible, we generated group discrimina-
tive maps (Fig. 3 and fig. S3), i.e., maps of the
cortical locations that contribute most to the dis-
crimination of conditions. Single-subject reliabil-
ity maps are reported in fig. S4. Discriminative
patterns for vowels [red color (Fig. 3B and
fig. S3)] were widely distributed bilaterally in the
superior temporal cortex and included regions in
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Fig. 1. Experimental design and stimuli.
(A) Example of spectrograms of the stimuli
from the nine conditions (three vowels ×
three speakers). Stimuli were presented
during the silent intervals of fMRI mea-
surements and were three natural Dutch
vowels (/a/, /i/, and /u/) spoken by three
native Dutch speakers (sp1: female, sp2:
male, and sp3: male). (B) Representation
of the vowels based on the first two for-
mants (F1, F2). Each of the conditions was
formed by grouping three different utter-
ances from the same speaker. The insert
indicates mean value and standard de-
viation of the fundamental frequency (F0)
for each of the speakers.

Fig. 2. Performance of the
brain-based decoding of vow-
els and speakers. Correctness
(median value and distribu-
tion) of all pairwise classi-
fications when training and
testing of the algorithm were
based on different subsets of
responses to the same stimu-
li [(A) vowels; (B) speakers] or
when training and testing
were based on responses to
different speakers (C) and
vowels (D) (chance level is
0.5).
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the anterior-lateral portion of Heschl’s gyrus–
Heschl’s sulcus, in the PT (mainly in the left
hemisphere), and extended portions of theSTS/STG
(both hemispheres). Discriminative patterns for
speakers [blue color (Fig. 3C and fig. S3)] were
more confined and right-lateralized than those
obtained for vowel discrimination. These pat-
terns included the lateral portion of Heschl’s
gyrus–Heschl’s sulcus, located in the posterior
adjacenty to a similar region described for vowel
discrimination and three clustered regions along
the anterior-posterior axis of the right STS, also
interspersed with vowels regions (fig. S3). These
findings indicate a spatially distributed model for
both the representation of vowel and speaker
identity (see supporting online text).

Encouraged by these results, we tested the
capability of our algorithm to decipher the brain
activity into speech content and speaker identity
also in the case of completely novel stimuli (i.e.,

stimuli not used during the training). We trained
the algorithm in discriminating vowels with
samples from one speaker (e.g., /a/ versus /i/ for
sp1) or one vowel (e.g., sp1 versus sp2 for /a/)
and tested the correctness of this discrimination
in the other speakers (e.g., sp2 and sp3) or in the
other vowels (e.g., /i/ and /u/). With this strategy,
stimuli used for training and for testing differ in
many acoustical dimensions. An accurate decod-
ing of activation patterns associated with the test
stimuli would thus indicate that the learned func-
tional relation between a cortical activation pat-
tern and a vowel (or a speaker) entails information
on that vowel (or speaker) beyond the contingent
mapping of its acoustic properties. Despite the
small number of training samples (20 trials),
classification of novel stimuli was accurate in all
subjects and in all possible pairwise comparisons,
both in the case of vowels [/a/ versus /i/ = 0.66
(mean accuracy), P = 1 × 10−6; /a/ versus /u/ =

0.62, P = 3 × 10−5; /i/ versus /u/ = 0.60, P = 7 ×
10−5 (Fig. 2C)] and in the case of speakers [sp1
versus sp2 = 0.62 (mean accuracy), P = 6 × 10−6;
sp1 versus sp3 = 0.65, P = 8 × 10−7; sp2 versus
sp3 = 0.63, P = 2 × 10−6 (Fig. 2D)]. Although
sparser, the corresponding discriminative maps
included a subset of the locations highlighted
by the previous analyses (outlined regions in
Fig. 3, B and C).

The abstract nature of the estimated cortical
representations is illustrated in Figs. 3, D and E,
and 4. First, we visualized the speaker-invariant
cortical representation of vowels and the vowel-
invariant representation of speakers for which
we used multidimensional displays [fingerprints
(Fig. 3, D and E)]. Second, we visualized the
relation between the discriminative patterns of ac-
tivations for the nine conditions using self orga-
nizing maps (SOMs) (21), which convert complex
relations between high-dimensional items into
simple geometric relations. The spatial proxim-
ity and grouping of the conditions in the SOM-
based two-dimensional display thus reflects the
level of abstraction and categorical information
entailed in the discriminative patterns of vowels
(Fig. 4, A and B) and speakers (Fig. 4, C and
D). To investigate which acoustic features in the
original sounds drive this neural abstraction, we
examined the relative distance between the brain-
based representations of the stimuli and their
description in terms of typical acoustic features
(formants, Fig. 1B). We found that the distances
between the cortical representations of the sounds
correlated best with a description of the stimulus
based on the first two formants (F1, F2) in the
case of vowels [r = 0.75, P = 2 × 10−7 (Fig. 4E
and fig. S5)] and on the fundamental frequency
(F0) in the case of speakers [r = 0.64, p = 2 ×
10−5 (Fig. 4F and fig. S5)]. These results provide
empirical support for cognitive models of speech
and voice processing postulating the existence of
intermediate computational entities resulting from
the transformation of relevant acoustic features
[the (F1, F2) pair for vowels and (F0) for speakers]
and the suppression of the irrelevant ones.

Our findings demonstrate that an abstract
representation of a vowel or speaker emerges
from the joint encoding of information occurring
not only in specialized higher-level regions but
also in auditory regions, which—because of their
anatomical connectivity and response properties—
have been associated with early stages of sound
processing. This is in agreement with recent
neurophysiological findings indicating that neu-
rons in early auditory regions may exhibit com-
plex spectrotemporal receptive fields and may
participate in high-level encoding of auditory
objects (25–29), e.g., via local feedback loops
and reentrant processing. Taken together, these re-
sults prompt a revision of models of phoneme and
voice abstraction, which assumes that a hierarchy
of processing steps is “mapped” into a functional
hierarchy of specialized neural modules.

In conclusion, we demonstrated the feasi-
bility of decoding speech content and speaker

Fig. 3. Cortical discriminative maps and activation fingerprints for decoding of vowels and
speakers. (A to C) Group discriminative maps obtained from cortex-based realignment of individual
maps. Maps are visualized on the folded (A) or inflated representation of the cortex [auditory cortex
detail in (B and C); light gray, gyri, dark gray, sulci] resulting from the realignment of the cortices
of the seven participants. A location was color-coded (vowels, red; speakers, blue) if it was present
on the individual maps of at least four of the seven subjects. This corresponds to a false discovery
rate–corrected threshold of q = 6 × 10−4 for vowels and q = 9 × 10−4 for speakers (21). Outlined
regions in (B) and (C) indicate cortical regions that were also included in the group maps obtained
with the generalization analysis. (D and E) Activation fingerprints of the sounds created from the
15 most discriminative voxels for decoding of vowels (D) and speakers (E) (single-subject data,
subject 1). Each axis of the polar plot forming a fingerprint displays the normalized activation level
in a voxel. Note the similarity among the fingerprints of the same vowel [horizontal direction in
(D)] or speaker [vertical direction in (E)].
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identity from observation of auditory cortical
activation patterns of the listeners. Our analy-
ses provided a detailed empirical demonstration
of how the human brain forms computationally
efficient representations required for speech com-
prehension and speaker identification. Our exper-
imental settings, however, were restricted to three
vowels and three speakers; furthermore, all sounds
were presented in isolation to obtain distinct fMRI
activation patterns. Extension of these results to
identify a word or concatenation of words in
streams of longer speech segments, provides a
compelling challenge and will contribute to create
a general brain-based decoder of sounds in the
context of real-life situations.
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Fig. 4. Visualization
of the brain-based rep-
resentation of the sounds
and relation with acous-
tical features. (A to D)
SOM-based display of
the discriminative pat-
terns in a single-subject
(subject 1, A and C) and
in the group of seven
subjects (B and D) for
vowel (A and B) and
speaker learning (C and
D). (E and F) Relation
between normalized
distances of the multi-
dimensional auditory
cortical activation pat-
terns and normalized dis-
tances of the vowels in
the (F1, F2) space of for-
mants (E) and of the
speakers in the space
of fundamental frequen-
cy (F0) (F).
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